Grade 8 Math Curriculum Map

Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/Benchmark s	Timeline (Months/ Weeks/ Days)

8.EE. 7 MP. 1 MP. 2 MP. 3 MP. 4 MP. 7	Solving Equations	-1 Step/2 Step Equations - I can solve linear equations in one variable. - I can check the solution to an equation. -Variables on Both Sides/Classify Solutions - I can explain the differences between one solution, no solution, and infinitely many. - I can solve a linear equation with infinitely many solutions, no solutions, and one solution. -Distributive Property - I can simplify equations using the distributive property and inverse operations. -Combining Like Terms - I can simplify equations by combining like terms and inverse operations. -Translating and Solving Equations - I can translate and solve multi-step linear equations with rational number coefficients.	Eureka Math Grade 8 Module 4 - Linear Equations	Formative: -Bell-Ringers/Do-Nows, Exit Tickets, Observation of Class Work Summative: -1 Quiz, 1 Test	8 Days

8.EE.5, 8.EE.6, 8.EE. 8 MP. 1 MP. 2 MP. 3 MP. 4 MP. 7	Linear Equations	-Constant Rates - I can compare two different proportional relationships represented in different ways (graph vs. table vs. equation vs. verbal description). -Slope - I can describe unit rate as the slope of a graph. - I can identify the slope of a linear relationship from equations, tables, and graphs. -Graphing (Table of Values; $y=m x+b)$ - I can determine the slope of a line by counting the rise over the run of the given line. - I can explain slope as a constant rate of change (rise over run). - I can explain why the slope of a line is the same for any two points on the graph using rise over run. - I can, given a line that passes the vertical axis at point other than the origin, write the equation for the line in the form $y=m x+b$, where the slope is found using rise over run and b is where the line intercepts the vertical axis. - I can, given a line that passes through the origin, write the equation for the line in the form y $=m x$, where the slope is found using rise over run.	Eureka Math Grade 8 Module 4 - Linear Equations	Formative: -Bell-Ringers/Do-Nows, Exit Tickets, Observation of Class Work Summative: -2 Quizzes, 1 Test	13 Days

		-Slope Intercept Form (solve for y) - I can write the equation for the line in the form $y=m x+b$ -Identifying Graphs - I can, given a line that passes the vertical axis at a point other than the origin, write the equation for - the line in the form $y=m x+b$, where the slope is found using rise over run and b is where the line intercepts the vertical axis. -Identifying Lines Given 2 Points	Eureka Math Grade 8 Module 4 - Linear Equations		
8.EE.8a 8.EE.8b 8.EE.8c MP. 1 MP. 2 MP. 3 MP. 4 MP. 7	Systems of Equations	-Graphing - I can define the solution to a linear system of equations as the intersection point on a graph. - I can graph a system of linear equations. - I can identify the point of intersection to a system of linear equations. -Solving (Substitution/Elimination) - I can solve a system of linear equations algebraically with one solution. -Translating (Word	Eureka Math Grade 8 Module 4 - Linear Equations	Formative: -Bell-Ringers/Do-Nows, Exit Tickets, Observation of Class Work Summative: -2 Assessments	10 Days

		Problems/Situations) - I can solve a system of linear equations created from a word problem. - I can write a system of linear equations from a word problem. -Classifying Solutions (One/None/Infinite) - I can solve a system of linear equations algebraically with infinitely many solutions, no solution, and one solution. - I can solve simple systems of linear equations by inspection.	Grade 8 Module 4 - Linear Equations		
CFA \#1 (Date Determined by BOCES Regional Collaboration)- 1 Day					
8.G. 5 MP. 2 MP. 3 MP. 5 MP. 6	Angles	-Angle Pairs -Parallel Lines - I can prove/explain why alternate exterior, alternate interior, and corresponding angles are congruent. -Triangles (Sum and Exterior) - I can prove/explain the exterior angle theorem of a triangle. - I can prove/explain why the three angles of a triangle equal 180	Eureka Math Grade 8 Module 2 - The Concept of Congruence	Formative: -Bell-Ringers/Do-Nows, Exit Tickets, Observation of Class Work Summative: -1 Quiz	5 Days

8.G.1, 8.G.2, 8.G.3, 8.G. 4 MP. 2 MP. 3 MP. 5 MP. 6	Rigid Motions	-Reflections, Rotations, Translations, Sequences - I can explain the preservation of the sides of a figure through a given transformation. - I can identify corresponding parts between a figure and its image using prime notation. - I can show that lines are taken to lines and line segments are taken to line segments. - I can translate, rotate, and reflect lines and line segments. - I can identify corresponding parts between a figure and its image using prime notation. - I can measure angles using a protractor. - I can show that angles are taken to angles of the same measure. - I can translate, rotate, and reflect geometric shapes on a coordinate plane. - I can describe the sequence of transformations that occurred from the original 2D figure to the - image.	Eureka Math Grade 8 Module 2 - The Concept of Congruence	Formative: -Bell-Ringers/Do-Nows, Exit Tickets, Observation of Class Work Summative: -1 Quiz, 1 Test	10 Days
$\begin{aligned} & \text { 8.G.1, } \\ & \text { 8.G.2, } \end{aligned}$	Similarity	-Dilations - I can describe the effect of	Eureka Math Grade 8	Formative: -Bell-Ringers/Do-Nows,	6 Days

8.G.3, 8.G. 4 MP. 3 MP. 4 MP. 6 MP. 8		dilating a two-dimensional figure using coordinates. - I can dilate a two-dimensional figure using coordinates. -Sequences - I can describe the sequence of transformations that occurred from the original 2D figure to the image to show the similarity. - I can explain the preservation of similarity when a figure is dilated, rotated, reflected, and/or translated	Module 3 - Similarity Eureka Math Grade 8 Module 3 - Similarity	Exit Tickets, Observation of Class Work Summative: -1 Quiz, 1 Test	
8.EE. 1 MP. 2 MP. 3 MP. 6 MP. 7 MP. 8	Exponents	-Multiply and Divide - I can divide the numerical expressions with integer exponents with like bases by subtracting the exponents. - I can evaluate numerical expressions with integer exponents. - I can multiply numerical expressions with integer exponents with like bases by adding the exponents. -Power Raised to a Power - I can evaluate numerical expressions by multiplying powers and exponents -Negative/Zero Power - I can write a numerical	Eureka Math Grade 8 Module 1 Integer Exponents and Scientific Notation	Formative: -Bell-Ringers/Do-Nows, Exit Tickets, Observation of Class Work Summative: -1 Quiz, 1 Test	6 Days

		expression with a negative exponent as an equivalent numerical expression with a positive exponent (write the base as a fraction).	Module 1 - Integer Exponents and Scientific Notation		
CFA \#2 (Date Determined by BOCES Regional Collaboration)- 1 Day					
8.EE. 3 8.EE. 4 MP. 2 MP. 3 MP. 6 MP. 7 MP. 8	Scientific Notation	-Add, Subtract, Multiply and Divide - I can expand numbers written in scientific notation into standard form. - I can rewrite numbers in standard form in scientific notation. - I can add, subtract, multiply, and divide numbers written in scientific notation, applying laws of exponents. -Word Problems -Ordering/Comparing - I can compare the magnitude (size) of 2 or more numbers written in scientific notation. - I can divide numbers in scientific notation to compare their sizes.	Eureka Math Grade 8 Module 1 - Integer Exponents and Scientific Notation	Formative: -Bell-Ringers/Do-Nows, Exit Tickets, Observation of Class Work Summative: -2 Quizzes, 1 Test (CFA)	11 Days
$\begin{aligned} & \text { 8.F. } 1 \\ & \text { 8.F. } 2 \end{aligned}$	Functions	-What it is/is not - I can define the x-coordinate	Eureka Math Grade 8	Formative: -Bell-Ringers/Do-Nows,	14 Days

8.F. 3 8.F. 4 8.F. 5 MP. 2 MP. 4 MP. 6 MP. 7 MP. 8		as the input (domain) and the y-coordinate as the output (range). - I can find the input/output of function given a value from the domain or a value from the range. - I can identify a function as a one-to-one correspondence. - I can identify a function as a set of ordered pairs on a graph. - I can identify a relation as a function from a graph, equation, or set of ordered pairs. - I can plot an ordered pair on a coordinate axis. - can compare/contrast linear vs. nonlinear functions represented as equations, tables, and graphs. - I can identify a linear function as $y=m x+b$. - I can identify functions that are not linear from equations, tables, and graphs. - I can identify linear functions as having graphs that are straight lines. - I can identify linear functions in tables. - Use functions to model	Modules 5 Examples of Functions from Geometry and 6 - Linear Functions	Exit Tickets, Observation of Class Work Summative: -2 Quizzes, 1 Test	$\begin{array}{\|l} \text { (+1 Snow } \\ \text { Day) } \end{array}$

		-Comparing: Translating vs. increasing/decreasing - I can describe the features of a graph (increasing/decreasing, linear/nonlinear, or constant). - I can describe the qualitative functional relationship given a graph. - I can identify the type of function given a graph. - I can sketch a graph that has been described verbally. -Linear vs. nonlinear -Rules	Modules 5 - Examples of Functions from Geometry and 6 - Linear Functions		
8.G. 9	Volume	-Sphere - I can write and solve using the	Eureka Math Grade 8	Formative: -Bell-Ringers/Do-Nows,	7 Days

MP. 2 MP. 4 MP. 6 MP. 7 MP. 8		formula for the volume of a sphere. -Cone - I can write and solve using the formula for the volume of a cone. -Cylinder - I can write and solve using the formula for the volume of a cylinder. -Composite Figures - I can write and solve using the formula for the volume of a cylinder. - I can write and solve using the formula for the volume of a cone. - I can write and solve using the formula for the volume of a sphere. -Word Problems - I can solve word problems involving the volume of cones, cylinders, and spheres. -Solving for Other Variables - I can solve a multi-step equation for a missing variable. -Surface Area	Module 5 - Examples of Functions from Geometry and 6 - Linear Functions	Exit Tickets, Observation of Class Work Summative: -1 Quiz or Test	

		- I can solve a multi-step equation for a missing variable.	Modules 5 - Examples of Functions from Geometry and 6 - Linear Functions		
CFA \#3 (Date Determined by BOCES Regional Collaboration)-1 Day					
8.SP. 1 8.SP. 2 8.SP. 3 8.SP4 MP. 2 MP. 4 MP. 6	Statistics	-Types of Correlation - I can describe linear/nonlinear association of data. - I can describe patterns for clustering of data. - I can describe patterns for outliers of data. - I can describe positive/negative association of data. - I can interpret scatter plots for bivariate data. -Line of Best Fit - I can describe the slope and intercept from the equation of a linear model to solve a problem. -Two-Way Frequency Tables - I can draw conclusions about the association between the data (positive association/negative association).	Eureka Math Grade 8 Module 6 - Linear Functions Eureka Math Grade 8	Formative: -Bell-Ringers/Do-Nows, Exit Tickets, Observation of Class Work Summative: -1 Quiz	8 Days

		-Interpret Graphs and Equations - I can describe the slope and intercept from the equation of a linear model to solve a problem. - I can draw logical conclusions using slope and y-intercept of the line. - I can identify the slope and intercept from the equation of a linear model in the context of a problem.	Module 6 - Linear Functions		
		-Review for NYS Test			4 Days
NYS Math Assessment-2 Days					
$\begin{array}{\|l} \text { 8.NS. } 1 \\ \text { 8.NS. } 2 \\ \text { 8.EE. } 2 \\ \\ \text { MP. } 6 \\ \text { MP. } 7 \\ \text { MP. } 8 \end{array}$	Rational and Irrational Numbers	-Rational vs. Irrational - I can determine if a number is rational or irrational. - I can use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). -Solving Equations with Radicals - I can use square root and cube root symbols to find solutions to the equations of the form $x^{2}=p$ and $x^{3}=p$,	Eureka Math Grade 8 Module 7 - Introduction to Irrational Numbers Using Geometry	Formative: -Bell-Ringers/Do-Nows, Exit Tickets, Observation of Class Work Summative: -1 Quiz	7 Days

		where p is a positive rational number. - I can evaluate square roots of small perfect squares and cube roots of small perfect cubes and know that $\sqrt{ } 2$ is irrational.			
8.G. 6 8.G. 7 8.G. 8 MP. 6 MP. 7 MP. 8	Pythagorean Theorem	-Formula - I can explain the Pythagorean Theorem and its converse. -Application - I can apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. - I can apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	Eureka Math Grade 8 Module 7 - Introduction to Irrational Numbers Using Geometry	Formative: -Bell-Ringers/Do-Nows, Exit Tickets, Observation of Class Work Summative: -1 Quiz	7 Days
8.G. 9 MP. 6 MP. 7 MP. 8	Volume	-Solving Volume Problems with Radicals - I can use the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems. Problems will now include radicals.	Eureka Math Grade 8 Module 7 - Introduction to Irrational Numbers Using Geometry	Formative: -Bell-Ringers/Do-Nows, Exit Tickets, Observation of Class Work, Group Work Problems/Projects Summative: -1 Quiz	6 Days

	Pre-Topics for Algebra next year	-With time remaining in the school year we pre-teach topics that will show up in Algebra in 9th grade Topics we try to cover: -Polynomials (identifying, classifying, standard form) Operations with Polynomials (add, subtract, multiply and divide) - Factoring Binomials and Polynomials (GCF, difference of 2 perfect squares, trinomial) Inequalities (Solving multi-step and graphing solutions)	Remaining days - as available		
Simplifying Radicals				\quad	3 Days
:---					

